- standardized clinical presentation
- randomization
- blinding of the subiects and examiners
- sample size(number of patients and sites)
- statistical power of the study
- confounding factors, such as medications or other treatments
- use of anaesthesia
- inclusion of controls
- ¡°sham¡± irradiation to identify the size of the placebo effect
- optimal ¡°window¡± for the timing of treatment
- length of follow-up
Optical factors
- laser of LED light source
- wavelength
- spot size
- power density
- energy density
- mode operation(continuous wave or pulsed)
- timing of treatments(single or multiple)
10. Âü°í¹®Çå(References)
1). Walsh L J:The current status of low laser therapy in dentistry.I.Soft tissue application. Aust Dent J 42:247-254, 1997
2). Karu T I: Photobiology of low-power laser effects. Hlth Phys56:691-704, 1989
3). Laakso E L, Richardson C R, Cramond T: Factors affecting low level laser therapy. Aust J Physiol 39:95-99, 1993
4). Walsh L J: The current status of laser applications in dentistry. Aust Dent J 48:146-155, 2003
5). Sandford M A, Walsh L J: Thermal effects during desensitization of teeth with gallium-aluminium-arsenide lasers. Periodontol 15:25-30,1994
6). Ohshiro T, Calderhead F G: Low level laser therapy: A practical introduction. John Wiley & Sons, Chichester 1988, 11-18
7). Karu T I: Photobiology of low-power laser therapy. Harwood Academic Publishers, London 1989
8). Yu W, Naim J O, Lanzafame R J: Effects of Photostimulation on wound healing in diabetic mice. Lasers Surg Med 20: 56-63, 1997
9). Karu T I:Photobiological fundamentals of low-power laser therapy. IEEE J Quant Electron QE-2 3:1703-1717, 1987
10). Karu T I:Molecular mechanism of the therapeutic effect of low-intensity laser radiation. Lasers Life Sci 2:53-74, 1988
11). Mester E,Mester A F, Mester A: The biomedical efferts of laser application. Lasers Surg Med 5 : 31-39, 1985
12). Walsh L J: Ultraviolet B irradiation inducesmast cell degranulation and reease of tumour necrosis factor-alpha. Immunol Cell Biol 73: 226-233, 1995
13). El Sayed S O, Dyson M: Acomparison of the effect of mulwavelength light produced by a cluster of semi-conductor diodes and of each individual diode on mast cell number and degrnulation in intact and injured skin. Lasers Surg Med 10: 1-10, 1990
14). Walsh L J, Davis M F, Xu L J, Savage N W: Relationship between mast cell degranulation, reease of TNF, and inflammation in the oral cavity. J Oral Pathol Med 26: 266-272, 1995
15). Walsh L J: Mast cells and oral inflammation. Crit Rev Oral Biol Med 14: 188-198, 2003
16). Walsh L J, Trinchieri G, Waldorf H A, Whitaker D, tumor necrosis factor-¥á which induces endothelial leukocyte adhesion molkecule-1. Proc Natl Acad Sci USA 88: 4220-4224, 1991
17). Walsh L J, Lavker RM, Murphy G F: Determinants of immune cell trafficking I n the skin. Lab Invest 63: 592-600, 1990
18). Walsh L J, Kaminer M S, Lazarus G S, Lavker R M, Murphy G F: Role of laminin in localization of dermal mast cells. Lab Invest 65: 433-440, 1991
19). Yu W, Naim J O, Lanzafame R J: The effect of laser irradiation on the release of bFGF from 3T3 fibrobasts. Photochem photobiol 59: 167-170, 1994
20). Bisht D, Mehrotra R, Singh P A, Atri S C, Kumar A: Effect of helium-neon laser on wound healing. Indian J Exp Biol 37:187-189, 1999
21). Walsh L J, Murphy G F: The role of adhesion molecules in cutaneous inflammation and neoplasia. J Cutan Pathol 19: 161-171, 1992
22). Abergel R P, Lyons R F, Castel J C, Dwyer R M, Uitto J: Biostimulation of wound healing by lasers:experimental approaches in animal models and in fibroblast cultures. J Dermatiol Surg Oncol 13: 127-133, 1987
23). Reddy G K, Stehno-Bittel L, Enwemeka C S: Laser photostimulation accelerates wound healing in diabertic rats. Wound Repair Regen 9: 248-255, 2001
24). Noble P B, Shields E D, Blecher P D M, Bentley K C: Locomotory characteristics of fibroblasts within a threedimensional ollagen lattice: Modulatio by a Helium Neon soft laser. Lasers Surg Med 12: 669-674, 1992
25). Pourreau-Schneider N, Ahmed A,Soudry M, Jacquemier J, Kopp F, Franquin J C, Martin P M: Helium-Neon laser treatment transforms fibroblasts into yofibroblasts. Am J Pathol 137: 171-178, 1990
26). Medrado A R, Pugliese L S, Reis S R, Andrade Z A: Influence of low level laser therapy on wound healing and its biological ation upon myofibroblasts. Lasers Surg Med 32: 239-244, 2003
27). Gabbiani G, Hirschel B J, Ryan G B, Statkov P R, Maino G: Granulation tissue as a contractile organ. J Exp Med 135: 719-734, 1972
28). Gabbiani G: Modulation of fibroblastic cytoskeletal features during wound healing and fibrosis. Pathol Res Pract 190: 851-853, 1994
29). Sappino A P, Schurich W, Gabbiani G: Differentiation repertoire of fibroblastic cells; expression of cytoskeletal proteins as marker of phenotypic modulations. Lab Invest 63: 144-161, 1990
30). Schurich W, Seemayer T A, Gabbiani G: Myofibroblast. In: Sternberg S S: Histology for pathologists, 2nd ed. Lippincott/Raven, Philadelphia, 129-161
31). Kuhn C, Mcdonald J A: The roles of the myofibroblast in idio-pathic pulmonary fibrosis. Am J Pathol 138: 1257-1265, 1991
32). Adler K B, Low R B, Leslie K O, Mitchell J, Evans J N: Contractile cells in normal and fibrotic lung. Lab Invest 60: 473-485, 1989
33). Lyons R F, Abergel R P, Whithe R A, Dwyer R M, Castel J C, Uitto J: Biostimulation of wound healing in vivo by a helium-neon laser. Ann Plast Surg 18(1): 47-50, 1987
34) Marei M K, Abdel-Meguid S H, Mokhtar S A, Rizk S A: Effect of low-energy laser application in the treatment of denture-induced mucosal lesions. J Prosthet Dent77(3): 256-264, 1997
35). Wahl G, Bastanier S: Soft laser in postoperative care in dentoalveolar treatment. ZWR 100: 512-515, 1991
36). Simunovic Z: Low level laser therapy with trigger points technique: a clinical study on 243 patients. J Clin Laser Med Surg 14: 163-167, 1996
37). Simunovic Z, Ivankovich A D, Depolo A: Wound healing of animal and human body sport and traffic accident inuries using low-level laser therapy treatment: a randomized clinical study of seventy-four patients with control group. J Clim Laser Med surg 18: 67-73, 2000
38). Kulekciglu S, Sivrioglu K, Ozca O, Parlak M: Effectiveness of low-level laser therapy in temporomandibular disorder. Scand J Rheumatol 32: 114-118, 2003
39). Brosseau L, Welch V, Wells G, Tugwell P, de Bie R, Gam A, Harman K, Shea B, Morin M: Low level laser therapy for osteoarthritis and theumatoid arthritis: a meta analysis. J Rheumatol 27: 1961-1969, 2000
40). Pinheiro A L, Cavalcanti E T, Pinheiro T I, Alves M J, Miranda E R, De Quevedo A S, Manzi C T, Vieira A L, Rolim A B: Low-level laser therapy is an important tool to treat disorders of the maxillofacial region. J Clin Laser Med Surg 16: 223-226, 1998
41). Ohshiro T, Calderhead R G: Development of low reactivelevel laser therapy and is present status. J Clim Laser Med Surg 9: 267-275, 1991
42). Kitsmaniuk Z D, Demochko V B, Popovich V I: The use of low energy lasers for preventing and treating postoperative and radiation induced complications in patients with head and neck tumors. Vopr Onkol 8: 980-986, 1992
43). Mezawa S, Iwata K, Naito K, Kamogawa H: The possible analgesic effect of soft laser irradiation on heat nociceptors in the cat tongue. Arch Oral Biol 3 693-694, 1988
44). Sato T, Kawatani M, Takeshige C, Matsumoto I: GaAlAs laser irradiation inhibits neuronal activity associated with inflammation. Acupunct Electrother Res 19: 141-215, 1994
45). Tsuchiya K, Kawatani M, Takeshige C, Matsmoto I Laser irradiation abates neuronal responses to nociceptive stimulation of rat paw skin. Brain Res Bull 34: 369-374, 1994
46). Tsuchiya K, Kawatani M, Takeshige C, Sato T, Matsumoto I: Diode laser irradiation selectively diminishes slow component of axonal volleys to dorsal roots from the saphenous nerve in the rat. Neurosci Leff 161: 65-68, 1993
47). Baxter G D, Walsh D M, Allen J M, Lowe A S, Bell A J: Effects of low intensity infrared laser irradiation upon conduction in the human median nerve in vivo. Exp Physiol 79: 227-234, 1994
48). Tuner J, Hode L: It¡¯s all in the parameters: a critical analysis of some well-known negative studies on low-level laser therapy. J Clin Laser Med Surg 16: 245-248, 1998
49). Ghamsari S M, Taguchi K, Abe N, Acorda J A, Yamada H: Histopathological effect of low-level laser therapy on sutured wounds of the teat in dairy cattle. Vet Q 18: 17-21, 1996
50). Ghamsari S M, Taguchi K, Abe N, Acorda J A, Sato M Yamada H: Evaluation of low level laser therapy on primary healing of experimentally induced full thickness teat wounds in dairy cattle. Vet Surg 26: 114-120, 1997
51). Neiburger E J: The effect of low-power lasers on intraoral wound healing. NY State Dent J 61: 40-13, 1995
52). Neiburger E J: Rapid healing of gingival incisions by the helium-neon diode laser. J Mass Dent Soc 48: 8-13, 40, 1999
53). Saito S, Shimizu N: Stimulatory effects of low-power laser irradiation on bone reteneration in midpalatal suture during expansion in the rat. Am J Orthod Dentofac Orthoped 111: 525-532, 1997
54). Kert J, Rose L: Clinical laser therapy: low level laser therapy. Scandinavian Medical Laser Technology, Copenhagen 1989
55). Kubota J, Ohshiro T: The effects of diode laser low reactive-level laser therapy (LLLT) on flap survival in a rat model. Laser Ther 1: 127-133, 1989
56). Bourgelais D B C. Itzkan I: The physics of lasers. In: Arndt K A, Noe J M, Rosen S (eds.): Cutaneous laser therapy: principles and methods. John Wiley & Sons, London 1983, 13-25
57). Takeda Y: Irradiation effect of low-energy laser on alveolar bone after tooth extraction. Experimental study in rats. Int J Oral Maxillofac Surg 17: 388-391, 1988
58). Kucerova H, Dostalova T, Himmlova L, Bartova J, Mazanek J: Low-level laser therapy after molar extraction. J Clin laser Med Surg 18: 309-315, 2000
59). Walsh L J: Emerging applications for infrared lasers in implantology. Periodontol 23: 8-15, 2002
60). Anderson R R, Parrish J A: The optics of human skin. J Invest Dermatol 77: 13-19, 1981
61). Whelan H T, Smits R L Jr, Buchman E V, Whelan N T, Turner S G, Margolis D A, Cevenini V, Stinson H, Ignatius R, Martion T, Cwikinski J, Philippi A F, Graf W R, Hodgson B, Gould L, Kane M, Chen G, Caviness J: Effect of NASA light-emitting diode irradiation on wound healing.
62). Mester E, Nagylucskay S, Doklen A, Tisza S: Laser stimulation of wound healing. Acta Chir Aca Sci Hung 17: 49-55, 1976
63). Basford J R: The clinical and experimental status of low energy laser therapy. Phys Rehabil Med 1: 1-9, 1989
64). Basford J R: Low-energy laser therapy: controversies and new research findings. Lasers Surg Med 1: 1-9, 1989
65). Wheeler J, Slater N: Squaring off: The He-Ne vs red diode. Lasers Optron 16: 38-44, 1990
ÀúÃâ·Â ·¹ÀÌÀúÀÇ »ýüȰ¼ºÁ¶Àý È¿°ú
´Ü±¹´ëÇб³ Àǰú´ëÇÐ À̺ñÀÎÈÄ-µÎ°æºÎ¿Ü°úÇб³½Ç, ÀÇÇз¹ÀÌÀú¿¬±¸¼¾ÅÍ
Á¤ ÇÊ »óÀÌ »ó ÁØ
Biomodulation Effect of the Low-Level Laser Therapy(LLLT)
Phil-Sang Chung, MD and Sang Joon Lee, MD
Department of Otolaryngology-Head and Neck Surgery and Medical Laser Research Center,
Dankook University, Cheonan, Korea
Minimal (less than half of diameter) to moderate (more than half of diameter)
Predominantly inflammatory cells
None to thin at wound center
Few collagen fibers
Few capillaries
Completely epithelialized
More fibroblasts, still with inflammatory cells
7, sparse at wound center
8, thin layer at wound center, few collagen fibers
9, thicker layer, more collagen
Moderate collagen fibers
Moderate neovascularity
Fig. 2. Gross finding at 7 days in control (A), DPSS laser
(B) Note for more extensive whitish, crust formation at
both laser group than control group.
Á¶Á÷ÇÐÀûÀÎ º¯È°üÂû
´ëÁ¶±º¿¡¼ â»ó 3Àϰ, 7Àϰ, 10Àϰ ÃøÁ¤ÇÑ Á¶Á÷ÇÐÀûÀÎ Á¡¼ö(histologic score)´Â 3.6¡¾1.1, 7.0¡¾1.0, 9.0¡¾0.7À̾ú°í, DPSS ·¹ÀÌÀú±º¿¡¼´Â °¢°¢ 3.4¡¾0.9, 9.0¡¾0.7, 10.8¡¾0.8À̾ú´Ù. â»óÄ¡À¯ÀÇ Á¤µµ¸¦ ´ëÁ¶±º°ú ºñ±³ÇÑ °á°ú´Â 7ÀϰºÎÅÍ DPSS ·¹ÀÌÀú±ºÀÌ Åë°èÇÐÀûÀ¸·Î À¯ÀÇÇÑ ¼öÁØ¿¡¼ â»óÄ¡À¯°¡ ÀÇ¹Ì ÀÖ°Ô Áõ°¡ÇÏ¿´´Ù(Fig. 3). Fig. 3. Histologic finding at 7days in control (A), DPSS laser (B). A£ºControl group, at 7 days, Note for thin layer of granulation
tissue at wound center and moderate epithelialization change (histologic score£º6, based on Table 1. H & E
staining, ¡¿100), B£ºDPSS laser group, at 7 days, Note for multiple extensive neovascularization (histologic score =10,
based on Table 1. H & E staining, ¡¿100).
Fig. 4. The photograph of low-power laser irradiation on the back skin of the mouse.
À°¾È°üÂû
´ëÁ¶±º¿¡¼ ¸ð¹ßÀÇ ¼ºÀåÀº ¸¶¿ì½º µîÀÇ ¸ð¹ßÁ¦°Å ÈÄ 13ÀÏ °æºÎÅÍ ¸ð¹ßÀÌ ÀÚ¶ó¼ 25ÀÏ °æ ¸ð¹ßÀÌ ¿ø·¡ »óÅ´ë·Î ȸº¹µÇ¾ú´Ù. ·¹ÀÌÀú¸¦ Á¶»çÇÑ ±º°ú ¹ß¸ðÃËÁøÁ¦¸¦ óġÇѱºÀº °¢°¢ ¸ð¹ßÁ¦°Å ÈÄ 9ÀÏ °æºÎÅÍ ¸ð¹ßÀÌ ÀÚ¶ó¼ 20Àϰ濡 ¿ø·¡»óÅ·Πȸº¹µÇ¾ú´Ù(Fig. 5). Fig. 5. Change of the gross morphology of hair growth in the depilated area of mice according to the duration£º
Control (upper), Laser irradiation group (middle), MoenMore applied group (lower).
º´¸®Á¶Á÷ÇÐÀû °üÂû
·¹ÀÌÀúÁ¶»ç 12ÀÏ ÈÄ ½ÃÇàÇÑ º´¸®Á¶Á÷ÇÐÀû °Ë»ç»ó ·¹ÀÌÀú¸¦ Á¶»çÇÑ ºÎÀ§¿¡´Â ¸Å¿ì ¸¹Àº »ýÀå±âÀÇ ¸ð³¶À» °üÂûÇÒ ¼ö ÀÖ¾úÀ¸³ª, ·¹ÀÌÀú¸¦ Á¶»ç¹ÞÁö ¾ÊÀº ºÎÀ§¿¡¼´Â ¸ð³¶ÀÌ
°ÅÀÇ °üÂûµÇÁö ¾Ê¾Ò´Ù(Fig. 6). Fig. 6. The histopathologic findings of the mouse skin at the 12th day after depilation.
1) Wei Y, John ON, Raymond JL. Effects of photostimulation on wound healing in diabetic mice. Lasers Surg Med 1997; 20:56-63.
2) Babapour R, Glassberg E, Lask GP. Low-energy laser systems. Clin Dermatol 1995;13:87-90.
3) Basford JR. Low intensity laser therapy: still not an established clinical tool. Lasers Surg Med 1995;16:331-42.
4) Mester E, Spiry T, Szende B, Tota JG. Effect of lasers rays on wound healing. Am J Surg 1971;122:532.
5) Neiburger E J. Rapid healing of gingival incisions by the helium-neon diode laser. J Mass Dent Soc 1999;48:8-13.
6) Maegawa Y, Itoh T, Hosokawa T, Yaegashi K, Nishi M. Effects of near-infrared low-level laser irradiation on microcirculation. Lasers Surg Med 2000;27:427-37.
7) Sakurai Y, Yamaguchi M, Abiko Y. Inhibitory effect of lowlevel laser irradiation on LPS-stimulated prostaglandin E2 production and cyclooxygenase-2 in human gingival fibroblasts. Eur J Oral Sci 2000;108:29-34.
8) Webb C, Dyson M, Lewis WH. Stimulatory effect of 660 nm low level laser energy on hypertrophic scar-derived fibroblasts: possible mechanisms for increase in cell counts. Lasers Surg Med 1998;22:294-301.
9) Utsunomiya T. A histopathological study of the effects of low-power laser irradiation on wound healing of exposed dental pulp tissues in dogs, with special reference to lectins and collagens. J Endod 1998;3:187-93.
10) Bjordal J M, Couppe, C, Chow R, Tuner J, Ljunggren AE. A systematic review of low level laser therapy with locationspecific doses for pain from chronic joint disorders. Australian J Physiother 2003;49:107-16.
11) Utsunomiya T. A histopathological study of the effects of low-power laser irradiation on wound healing of exposed dental pulp tissues in dogs, with special reference to lectins and collagens. J Endod 1998;3:187-93.
12) Thawer HA, Houghton PE. Effect of laser irradiation on the growth and development of fetal mouse limbs in an in vitro model. Lasers Surg Med 1999;24:285-95.
13) Fung DT, Ng GY, Leung MC, Tay DK. Therapeutic low energy laser improves the mechanical strength of repairing medial collateral ligament. Lasers Surg Med 2002; 31:91-6.
14) Schindl A, Neumann R. Low-intensity laser therapy in an effective treatment for recurrent herpes simplex infection. Results from a randomized double-blind placebo-controlled study. J Invest Dermatol 1999;113:221-3.
15) Khuller SM, Bordin P, Barkvoll P, Haanaes HR. Preliminary study of low-level laser for treatment of longstanding sensory alteration in the inferior alveolar nerve. J Oral Maxillofac Surg 1996;54:2-7.
16) Goldman JA, Chiapella J, Casey H, Bass N, Graham J, Mc-Clatchey W, et al. Laser therapy of rheumatoid arthritis. Lasers Surg Med 1980;1:93-101.
17) Kim JW, Lee JO. Clinical Effect of Low Energy Photon (LEPT)-Light Emitting Diode (LED)-Light Therapy Guide Optical Bio-Tissue Engeineering Including LLLT in Unspecified Degree of Acute Burn Injury in Children. Korean J Laser Med 2003;7:56-65.
18) Trelles MA, Mayayo E. Bone fracture consolidates faster with low-power laser. Lasers Surg Med 1987;7:36-45.
19) Karu T. Photobiology of low-power laser effects. Health Phys 1989;56:691-704.
20) Schlager M, Oehler K, Huebner KU, Schmuth M, Spoetl L. Healing of burns after treatment with 670nm iow-power laser light. Plast Reconstr Surg 2000;105:1635-42.
21) Parekh S, Trauner KB, Zarins B, Foster TE, Amderson R. Photodynamic modulation of wound healing with BPDAMA and CASP. Laser Surg Med 1999;24:375-81.
22) Vlachos SP, Kontoes PP. Development of terminal hair following skin lesion treatments with an intense pulsed light source. Aesth Plast Surg 2002;26:303-7.
23) Satino JL, Markou M. Hair regrowth and increased hair tensile strength using the HairMax LaserComb for lowlevel laser therapy. Int J Cosm Aesth Dermatol 2003;5: 113-7._
Table 1. Results of Mean value for all Tectile NRSs measured according to the group and time Table 2. Results of ANOVA test for all Tectile NRSs measured according to the group
Fig. 1 Linea graph showing the changes of Tactile NRScores as a factor of each group and postirradiation period
ÇÑÆí, °¢ ÃøÁ¤ ½Ã±âº° Fisher¡¯s test¿¡¼´Â (Table 3) ³»¿ø 2ȸ ÀÌÈĺÎÅÍ ½ÇÇ豺°ú ´ëÁ¶±º°£¿¡ NRS °ªÀÇ À¯ÀǼº ÀÖ´Â Â÷À̸¦ º¸¿´´Ù(P<0.05).
Table 3. Results of Fisher¡¯s T test of all Tactile NRSs measured according to the time
1. Brannstrom, M.: Dentinal and pulpal response I.: Application of reduced pressure to exposed dentine. Acta. Odont. Scand., 18 : 1 15, 1960.
2. Braannstrom, M.: The hydrodynamics of the dentin : Its possible relationship to dental pain Int. Dent. J.,22 : 219-227, 1972.
3. Sessle, B.J.: The neurobiology of facial and dental pain: Present Knowledge, Future directions. J. Dent. Res., 66 : 962 981, 1986.
4. ÀÌÁ¾Èç : ±¸°»ý¸®ÇÐ. ¼¿µÃâÆÇ»ç. Pp. 2 19, 1985.
5. Shaeffer, M.L., Bixer, D. and Pao Lo Yu.: The effectiveness of iontophoresis in reducing cervical hupersensitivity. J. Periodontol., 42 : 698 700, 1971.
6. Carranza, F.A.: Glickman¡¯s Clinical periodontology. 6th. Ed. Saunders, pp. 769 770, 1984.
7. Dowell, P. and Addy, M.: Dentin hypersensitivity. A review. Aetiology, symptoms and theories of pain production. J. Clin.Periodontol., 10 : 341 350, 1983.
8. Murray, W., Rosenthal: Historic review of the management of tooth hypersensitivity. Dent. Clin. North. Am., 34 : 3 : 403-428, 1990.
9. Fish, E. W.: The circulation of lymph in dentin and enamel. J. Am. Dent. Assoc., 14 : 04, 1927.
10. Brannstom M : the elicitation of pain in human dentine and pulp by chemical stimuli. Arch. Oral Biol., 7 : 59 62, 1962.
11. Ramfjord, S. P., Ash, M.M.: Periodontology and periodontics, Saunders C. O., pp. 703 704, 1979.
12. Greenhill, J.D. and Pashley, D.H.: The effects of desensitizing atents on the hydraulic construction of human dentin in vitro. J. Dent. Res., 60 : 686 698, 1981.
13. David, H., Pashle, D.H: Mechanisms of Dentin sensitivity Dent. Clin. North. Am.,34 : 33 : 449 474, 1990.
14. Forssell Ahlberg K: Influencee of noxious dental pulp. Acta. Physiol. Scand., 103 71, 1978.
15. Graf, H. and Galasse, R.: Morbidity, prevalence and intraoral distributionof hypersensitive teeth. J. Dent. Res.,(Sp. issueA) 56 : 162, 1973.
16. ½ÅÇý·Ã. À̸¸¼·. ±Ç¿µÇõ: Ä¡ÁÖ¼ö¼ú ÈÄ ³ëÃâµÈ Ä¡±Ù¿¡¼ ¹ß»ýÇÏ´Â Áö°¢ °ú¹ÎÁõÀÇ ¹ß»ý»óÅ¿¡ °üÇÑ ¿¬±¸. ´ëÇÑÄ¡ÁÖ°úÇÐȸÁö vol. 18, No. 2, 174 185, 1998.
17. Lukomsky, E.H.: Fluoride therapy for exposed dentin and alveolar atrophy. J. Dent. Res, 20 : 649 655, 1941.
18. Hyot, W.H. and Bibby, B.G.: Use of sodium fluoride for desensitizing dentin. J. Am. Dent. Assoc., 30 : 1372 1376, 1943.
19. Minkoff, S. and Axelrod : Efficacy of strontium chloride in dentinal hypersen sitivity. J. Periodontol., 58 : 470-474, 1986.
20. Manning, M. M.: New approach to densensitization of cervical dentin. Dent. Surv., 37 : 731 736, 1961.
21. Minkov, B., Maarmari, L, Gedalia, L. and Garfunkel, A.: The effectiveness of sodium fluoride treatment with and without iontophoresis on the reduction of hypersensitive dentin. J. periodontol 46: 246 256, 1975.
22. Brough, K.M., Anderson, D.M., Love, J. and Wverman, P.R.: The effectiveness of iontophoresis in reducing dentin hypersensitivity. J. Am. Dent. Assoc., 142 : 761 775, 1985.
23. Carlo, G.T.: An evaluation of iontophoretic application of fluoride for tooth desensitization. J. Am. Dent. Assoc., 105 : 452 460, 1982.
24. Lutins, N., Greco, G.W. and MacFall, W.T.: Effectiveness of sodium fluoride on tooth hypersensitivity with and without iontophoresis. J. Periodontol., 55 : 285 291, 1984.
25. Geen, B.L., Green, M.L., McFfall, W.T.: Calcium hydroxide and potassium nitrate as desensitizing agents for hypersensitive root surface, J. Periodontol., 48 : 667 672, 1977.
26. Tardet, W.J., Ssilveerman, G., Stolman, J. M. and Fratarcangelo, P.A.: An evaluation of 2 methods for the quantitation of dentinal hypersensitivity. J. Am. Dent. Assoc., 98 : 914 918, 1979.
27. Orban, I.A.: Human coronal dentine: Structure and reactions. Oral Surg., 33 : 810 823, 1972.
28. Nishida, M., Katamsi, D., Uchida, A., Asano,, K., Ujimoto, H., Kaya, H. and Yokomizo, I.: Hypersensitivity of the exposed root surface after surgical periodontal treatman. J. Osaka univ. Dent. Sch., 16 : 73 81, 1976.
29. ÃÖ¿µ¸²., ±Ç¿µÇõ., À̸¸¼·: Ä¡ÁÖ¼ö¼ú ÈÄ µ¿Åë°ú ±âŸ ÇÕº´Áõ¿¡ °üÇÑ Åë°èÇÐÀû ¿¬±¸. ´ëÇÑÄ¡ÁÖ°úÇÐȸÁö. 17 : 229 243, 1987.
30. Mester, E., Mester, A.F. and Mester, A.: The biomedical effects of laser application. Laser in surgery and Medicine., 5 : 31 35, 1985.
31. Clayman, L., Fulleer, T. and Beckaman, H.: Healing of continuous wave and rapid superpulsed, carbon dixide, laser induced bone defect. J. Oral surg., 36 : 932 941, 1978
32. ±è±â¼®, ±è»ý°ï: Ä¡Àº¼¶À¯¾Æ¼¼Æ÷¿¡ ´ëÇÑ ÀúÃâ·Â ·¹ÀÌÀú±¤ÀÇ È¿°ú¿¡ °üÇÑ ½ÇÇèÀû ¿¬±¸. The Journal of the Korea Academy of Oral Medicine. Vol.3 : No.1, 1 15, 1991
33. Karu, T., et al: Helium neon induced respiratory burst of phagocytic cell. Laser in surgery and Medicine., 9: 585 594, 1989.
34. ±èµ¿¿î, Á¤ÁøÇü: ÀúÃâ·Â ·¹ÀÌÀú Á¶»ç°¡ ¼º°ßÀÇ ½ÇÇèÀû Ä¡ÁÖÁúȯ Ä¡À¯¿¡ ¹ÌÄ¡´Â ¿µÇâ¿¡ °üÇÑ Á¶Á÷ º´¸®ÇÐÀû ¿¬±¸. ´ëÇÑÄ¡ÁÖ°úÇÐȸÁö vol. 23, No. 1, 16 26, 1993.
35. ±èµ¿ÁØ: Áö°¡°ú¹Î Ä¡¾Æ¿¡ ´ëÇÑ Ã³Ä¡¹ý. The Journal of the Chung Buk Dental Association., 11 : 5 7, 1991
36. Jeffrey P. Okeson et al: Management of Temporomandibular Disorders and Occlusion, 3rd edition, °í¹®»ç, pp26 59, 1994.
37. Clark, G.E. and Trollos, E.S.: Designing hypersensitivity clinical studies. Dent. Clin. North. Am., 34 : 513 521, 1990.
38. Clark, D. C., Al Jobu, W., and Chan, E.C.S.: The efficacy of a new dentifrice in treating dentin sensitivity. Effects of sodium citrate and sodium fluoride as active ingredients. J. Periodont. Res., 22 : 89 93, 1987.
39. ÀÌÁø¿ë, ±èÇü¼·: Ư¼ö¼¼Ä¡Á¦¿Í ºÒ¼ÒÀ̿µµÀÔ¹ý¿¡ ÀÇÇÑ Ä¡¾Æ Áö°¢°ú¹ÎÁõ °³¼± È¿°ú¿¡ °üÇÑ ºñ±³¿¬±¸. ´ëÇÑÄ¡ÁÖ°úÇÐȸÁö. Vol. 19, No. 2, 147 158, 1989.
40. ÇѼöºÎ, ¹Ú»óÇö, ¹®Çõ¼ö: »ó¾ÆÁú Áö°¢°ú¹ÎÁõ¿¡ ´ëÇÑ potassium Nitrate Ä¡¾àÀÇ ÀÓ»óÀû Æò°¡. ´ëÇÑÄ¡ÁÖ°úÇÐȸÁö vol. 24, No. 1, 196 204, 1994.
41. Grossman, L.E.: The treatment of hypersensitive dentin. J. Am. Dent. Assoc., 22 : 592 598, 1935.
42. Howe p.: A method of sterilizing and at the same time impregnating with a metal affecting dental tissue(silver nitrate). Dent. Cosmos., 59 : 891 901, 1917.
43. Brannstrom, M. and Nyborg, H.: Pulp reaction to fluorde solution applied to deep cavities: An experimental histological study. J. Dent. Res., 50 : 1548 1560, 1971.
44. Zinnerr, D.D., Duany, L.F. and Lutz, H.J., A new dsensitizing dentifrice: preliminary report, J.Am. Dent. Asso., 95 : 982 985. 1977.
45. Tarbet, W.J., et al., Home treatment for dentinal hypersensitivity: a comparative study, J.Am. Dent. Asso., 105 : 227 240, 1982.
46. À̰æÈ¯, Á¤ÇöÁÖ: °ú¹Î¼º »ó¾ÆÁú¿¡ ´ëÇÑ Dentin Bonding AgentsÀÇ Ã³Ä¡ È¿°ú. ´ëÇÑÄ¡ÁÖ°úÇÐȸÁö: vol. 21, No 2, 331 344, 1991.
47. Kampon. S, William, K.B.S. et al: Studies with different types of visual analog scale for measurement of pain. Clin. Pharm. and Ther., 34 : 234 239, 1983.
48. Karlsson, U.L. and Penny, D.A.: Natural desensitization of exposed tooth roots in dogs. J. Dent. Res., 54 : 982 995, 1975.
- Abstract
Clinical Effect Of Low Level Laser Therapy In The Treatment Of Dentin Hypersensitivity Following Periodontal Surgery
Nam Yun Kim, Sung Bin Lim, Chin Hyung Chung
Dept. of Periodontology, College of Dentistry, Dan Kook University
Root surface exposure due to gingival recession after periodontal surgery, dentin exposure after root planning elicit pain response when exposed to mechanical, heat, chemical or osmotic stimulation. Especially, patients treated with periodontal surgery, show high frequency and there have been reports showing the 1 out of 7 patients have dentin hypersensitivity. There have been many studies on the clinical effects of various materials on the treatment of dentin hypersensitivity. but, none could provide absolute clinical efficacy.
In this study, 45 teeth from 30 patients, who had had periodontal surgery and showed dentin hypersensitivity after surgery were chosen for the experimental group and they were illuminated with laser, 15teeth were chosen for the control group and they were not exposed to laser. After this dentin hypersensitivity was elicited by tactile, compressed air, cold water and then, the degree was evaluated using NRS(Numerical Rating Scale). And during LLLT(Low Level Laser Therapy) semiconductor laser using Gallium Arsenide as a diode was illuminated for 180 seconds at a frequency of 7(500Hz). This therapy was done 10 times, and each time the changes in dentin hypersensitivity was evaluated using NRS.
The results were as follows :
After treat with LLLT on dentin hypersensitivity due to periodontal surgery, 22.2% showed total loss of dentin hypersensitivity, 60.0% showed loss of tactile dentin hypersensitivity, 48.8% showed loss of compressed air dentin hypersensitivity, 22.2% showed loss of cold water dentin hypersensitivity.
As a result of clinical evaluation of dentin hypersensitivity using NRS, there was significant increase in improvement of dentin hypersensitivity in the experimental group compare to the control group(P<0.05). And there was almost no natural loss of dentin hypersensitivity in the control group.
In comparison of the stages of evaluation, there was significant difference in between experimental and control group. After the second visit(P<0.05), and the difference increased with each visit.
Effect of Low Power Laser Irradiation on the Proliferation and Differentiation of PC12 Nerve Cells
Hyung Wook Joo, M.D., Seong Jae Lee, M.D., Jung Keun Hyun, M.D., Byung Hee Kim, M.D., Won Beom Park, M.D., Chang Ho Lee, M.D. and Bum Sun Kwon, M.D.1
Department of Rehabilitation Medicine, Dankook University College of Medicine, 1Department of Physical Medicine & Rehabilitation, Dongguk University College of Medicine
Objective: We examined the effect of low power laser ir - radiation (LPLI) on the proliferation and differentiation of PC12 nerve cells. Method: After seeding 4¡¿105 PC12 nerve cells each in the 24 well-culture dishes, we cultured them for 6 days with RPMI1640 media. LPLI (650 nm, 5 mW, 5 sec) was applied for 1 day, 2 days and 3 days (1, 2 and 3-day-LPLI groups) consecutively. For the degree of proliferation of PC12 nerve
cells, we compared the total cell number at 6th day after LPLI by MTT cell proliferation assay. For the degree of differentiation, we compared the length of neurite outgrowth and the expression of RT97 at 6th day after adding nerve growth factor on each group.
Results: The total cell numbers were increased significantly after LPLI, but those increments were not significant among 1, 2, and 3-day-LPLI groups. The numbers of the differentiated
PC12 nerve cells and the expressions of RT97 were diminished serially according to the number of days of LPLI. Conclusion: We conclude that LPLI increased the proliferation and decreased the differentiation of PC12 nerve cells. We could suggest that single or short-term use of LPLI on the injured nerve should be helpful for enhancing the neural regeneration in vivo. (J Korean Acad Rehab Med 2005; 29: 419-423)
Fig. 1. Total cell number after low power laser irradiation (LPLI) assessed by MTT cell proliferation assay. Total cell number of each LPLI group was significantly compared with that of control(p£¼0.01). Total cell number of each LPLI group was not significantly different.
Fig. 2. The number of differentiated PC12 nerve cells (A) and Western blot analysis with RT97(B) after adding NGF. The number of differentiated cells was significantly decreased after low power laser irradiation (LPLI) (p£¼0.01) and the expression of RT97 immunoreactivities was also serially decreased according to the number of LPLI days.
1) ÇöÁ¤±Ù, ¹Ú¼®°Ç, À̼ºÀç, ±Ç¹ü¼±: ÀúÃâ·Â ·¹ÀÌÀú Ä¡·á°¡ ÈòÁã Á°ñ½Å°æÀÇ Àç»ý¿¡ ¹ÌÄ¡´Â È¿°ú. ´ëÇÑÀçȰÀÇÇÐȸÁö 2004; 28: 64-70
2) Bagis S, Comelekoglu U, Coskun B, Milcan A, Buyukakilli B, Sahin G, Ozisik S, Erdogan C: No effect of GA-AS (904 nm) laser irradiation on the intact skin of the injured rat sciatic nerve. Lasers Med Sci 2003; 18: 83-88
3) Basford JR: Laser therapy: scientific basis and clinical role. Orthopedics 1993; 16: 541-547
4) Basford JR: Low intensity laser therapy; still not an established clinical tool. Lasers Surg Med 1995; 16: 331-342
5) Ben-Dov N, Shefer G, Irinitchev A, Wernig A, Oron U, Halevy O: Low-energy laser irradiation affects satellite cell proliferation in vitro. Biochim Biophys Acta 1999; 1448: 372-380
6) Boyd JG, Gordon T: A dose-dependent facilitation and inhibition of peripheral nerve regeneration by brain- derived neurotrophic factor. Eur J Neurosci 2002; 15: 613-626
7) Hall H, Bozic D, Michel K, Hubbell JA: N-terminal alpha-dystroglycan binds to different extracellular matrix molecules expressed in regenerating peripheral nerves in a protein-mediated manner and promotes neurite extension of PC12 cells. Mol Cell Neurosci 2003; 24: 1062-1073
8) Khullar SM, Brodin P, Messelt EB, Haanaes HR: The effects of low level laser treatment on recovery of nerve conduction and motor function after compression injury in the rat sciatic nerve. Eur J Oral Sci 1995; 103: 299-305
9) Kitao Y, Robertson B, Kudo M, Grant G: Neurogenesis of subpopulations of rat lumbar dorsal root ganglion neurons including neurons projecting to the dorsal column nuclei. J Comp Neurol 1996; 371; 249-257
10) Lawson SN, Harper AA, Harper EI, Garson JA, Anderton BH: A monoclonal antibody against neurofilament protein specificallylabels a subpopulation of rat sensory neurons. J Comp Neurol 1984; 228: 263-272
11) Lazar DA, Curra FP, Mohr B, McNutt LD, Kliot M, Mourad PD: Acceleration of recovery after injury to the peripheral nervous system using ultrasound and other therapeutic modalities.
Neurosurg Clin N Am 2001; 12: 353-357
12) Lee SK, Wolfe SW: Peripheral nerve injury and repair. J Am Acad Orthop Surg 2000; 8: 243-252
13) Lowe AS, Baxter GD, Walsh DM, Allen JM: Effect of low intensity laser (830 nm) irradiation on skin temperature and antidromic conduction latencies in the human median nerve: relevance of radiant exposure. Lasers Surg Med 1994; 14: 40- 46
14) McCallister WV, Tang P, Smith J, Trumble TE: Axonal regeneration stimulated by the combination of nerve growth factor and ciliary neurotrophic factor in an end-to-side model. J Hand Surg [Am] 2001; 26: 478-488
15) Mohiuddin L, Delcroix JD, Fernyhough P, Tomlinson DR: Focally administered nerve growth factor suppresses molecular regenerative responses of axotomized peripheral afferents in rats. Neuroscience 1999; 91: 265-271
16) Parris WC, Janicki PK, Johnson BW Jr, Mathews L: Infrared laser diode irradiation has no behavioral or biochemical effect on pain in the sciatic nerve ligation-induced mononeuropathy in rat. Anesth Prog 1994; 41: 95-99
17) Rochkind S, Nissan M, Alon M, Shamir M, Salame K: Effects of laser irradiation on the spinal cord for the regeneration of crushed peripheral nerve in rat. Lasers Surg Med 2001; 28:
216-219
18) Rochkind S, Ouaknine GE: New trend in neuroscience: lowpower laser effect on peripheral and central nervous system (basic science, preclinical and clinical studies). Neurol Res 1992; 14: 2-11
19) Shamir MH, Rochkind S, Sandbank J, Alon M: Double-blind randomized study evaluating regeneration of the rat transected sciatic nerve after suturing and postoperative low-energy laser treatment. J Reconstr Microsurg 2001; 17: 133-137
20) Shefer G, Oron U, Irintchev A, Wering A, Halevy O: Skeletal muscle cell activation by low-energy laser irradiation: a role for MAPK/ERK pathway. J Cell Physiol 2001; 187: 73-80
21) Shin DH, Lee KS, Lee E, Cho SS, Kim J, Kim JW, Kwon BS, Lee HW, Lee WJ: The correspondence between the labeling patterns of antibody RT97, neurofilaments, microtubule associated protein 1B and tau varies with cell type and development stage of chicken retina. Neurosci Lett 2003; 342: 167-170
22) Thomas CK, ErbDE, GrumblesRM, BungeRP:Embryonic cord transplants in peripheral nerve restore skeletal muscle function. J Neurophysiol 2000; 84: 591-595
23) Van Breugel HH, Bar PR: He-Ne laser irradiation affects proliferation of cultured rat Schwann cells in a dose-dependent manner. J Neurocytol 1993; 22: 185-190
24) Walsh DM, Baxter GD, Allen JM: Lack of effect of pulsed low-intensity infrared (820 nm) laser irradiation on nerve conduction in the human superficial radial nerve. Lasers Surg Med
2000; 26: 485-490
25) Wollman Y, Rochkind S: In vitro cellular processes sprouting in cortex microexplants of adult rat brains induces by low power laser irradiation. Neurol Res 1998; 20: 470-472
26) Young C, Miller E, Nicklous DM, Hoffman JR: Nerve growth factor and neurotrophin-3 affect functional recovery following peripheral nerve injury differently. Restor Neurol Neurosci 2001; 18: 167-175